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THE MAGNUS FORCE ON A FINNED BODY 

ABSTRACT 

The effect of spin on the aerodynamic forces generated on a slowly 

spinning finned projectile is analyzed. Experiments in the BRL wind 

tunnels, which substantiate the analysis, are described and presented. 

It is seen that the Magnus forces and moments are as large as those 

existing on a rapidly spinning nonfinned projectile where these forces 

are knovn to have an influence on accuracy and stability. 
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TABLE QF SYMBOLS 

a speed of sound 

d model diameter 

r distance from center of rotation (body centerline) 

M Mach number = a 
a 

Jg DüofcuaUlUU    yiCDDUl'C 

q dynamic pressure = ri pU^ 

Re Reynolds number = -ßÖ^ 

T0 stagnation temperature 

a angle of attack (positive a is nose up) 

p test section air density 

|i test section air viscosity 

(D 

v 

spin rate of model 'plus is clockwise looking upstream) 

col 
20 

_     ..    _        .        -p      *_ 
Cf    Magnus force coefficient = ±  (plus is to left looking 

A pu «£ ¥*± upstream; 

Cm    Magnus moment coefficient = - =  (plus is plus force ahead 
1 1  ~TT2 «tAJ   /nrt _J. J.  J._„\ st  (ju «^ s|        UJ. Qumeiii center; 

2   4  «or 

C.F.   Magnus force center of pressure location from base in calibers 
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In many cases of finned projectile flights It has become necessary 

to spin the projectile during flight in order to overcome the manu- 

facturing asymmetries of the body and fins. This tends to nullify the 

effect of fin asymmetries; however, the spin produces a Magnus force 

which may have a significant bearing on the trajectory* The bare body 

Magnus force has been explained in previous reports;x " however, the 

influence of spin on the fins is a phenomena which has never been 

studied. As will be seen below, the Magnus force developed on rotating 

fins is due to an entirely different mechanism than that responsible 

for the Magnus force on a body. 

When a rectangular flat plate is rotated, at a rate o>, about a 

line parallel to one of its sides, and para!lei to a uniform supersonic 

Ü, figure 1, the lift coefficient is equal to'10' 

ÜL = 
ka 

I—Ö  
V M"-l 

Here M is the free stream Mach number emd C* is the angle of attack 

created by the rotation of the flat plate. The angle of attack varies 

uniformly along the span of the flat plate and has its largest value at 

the extreme outboard section. It can be determined from 

oar 
a = — 

u 

When there is a series of flat plates aligned as the fins on a 

projectile the lift force on each fin contributes toward a torque about 

the centerline of rotation (the body axis) which tends to retard the - 

rotation. The lift on each fin is perpendicular to the fin surface and 

at zero angle of attack the lift forces on opposite fins cancel one 

another leaving only the torque. When the projectile is at other than 

zero angle of attack the body interference on the fins is such that the 



Uft force on the leeward fin is-reduced, thereby leaving an unbalanced 

force. This force acts perpendicular to the angle of attack plane and 

from figure 2 it can be seen that this force acts in the opposite di- 

rection to the body Magnus force. It is therefore possible, depending 

on the body and fin configuration to obtain either a positive, zero, or 

negative Magnus force on the projectile. The magnitude of the Magnus 

force in this case can only be determined by finding the body inter- 

ference from experiment. 

Even though the body and fin Magnus forces oppose one another, 

+Kgir (jn not have the same csn^-rs of Tsssure t    As a result a moment 

couple, independent of the center of gravity, is created which is equal 

to the lesser of the two forces multiplied by the distance between them, 

figure 2. The total Magnus moment about the projectile center of 

gravity will be the sum of the couple plus the moment due to the un- 

balanced Magnus force. 

xu  Ufuer   \AJ   vcnijr   yuMS   auuvc   lucw   OUSJ.   uu   uc ici iiu.iic    uic   uwujr 

interference a fin configuration, figure 3, has been tested in a 

supersonic wind tunnel. The configuration is one where the fin span 

4_a  .mini ■hQ the bo^v iss^r>r'  diameters Also- the fins have been end- 

plated, for other investigations*  ' show this increases the fin 

effectiveness in longitudinal stability. Both a spike nose and a 

conical nose have been included, for both noses are used on mass 

produced configurations of this type.v  ' The noses produce radi- 

cally different flows to their rear and it is expected that the fin 

Magnus forces will in turn be different. The tests cover the Mach 

number range 1.75 to U.00, for this is the normal operating range 

Of these configurations. 

It is also interesti"" to note here that when a bodv T>1US canted 

fins combination is considered, the configuration will free spin at 

10 



some rate co where the resultant rolling moment on each fin is zero. 

However, due to 

the lift force on various fin sections is not everywhere zero. Nega- 

tive forces (a force tending to increase spin) will exist on the 

inboard wing sections and positive forces will exist on the outboard 

wing sections, figure k.    For zero rolling moment the positive and 

negative moments must be equal such that I rdL =0« If now this 

configuration is placed at a small, angle of attack, each fin as it 

rotates to the lee side of the body will lose portions of its inboard 

lift distribution, thereby providing a means of producing a positive 

Magnus force. As the angle of attack is increased further, the lee 

fin begins to lose its outboard lift distribution so that the Magnus 

force would then decrease toward zero. Through this mechanism it is 

possible to predict a nonlinear Magnus force on a free spinning 

finned missile. 

11 



MODELS AND INSTRUMENTATION 

The models have "been designed along the same lines as those used 

in references 1 and 2. The model or outside surface of each configu- 
 XJ . 4.     XV —      __«.1._.t__    _..~_.X.I .~_     ~-f»     _«     _4_     i3~.t.MH     «»4.M    -.»V-t^V     -f M     «oi^X.-.^ X'auuu   lb    UJ-ic   rcvuiviug   ^luxtiuu   ui    eui   tu.i-vux»cu   muiyui    niuui   xo   uwuiiucu 

on the outer races of precision hall bearings. The inner races of the 

"bearings are mounted on a stationary cylinder which in turn is mounted 
«—     4-V.j.     .™„X_~__    *~A     ~4>    XVÄ     ■P^n,—     ^.->™n^^v,^^+      r.      ~ V. „ 1 „ », ,,«      fo    -r^l *■ S.V.     r,r\A 
\JLX       biJC       U^O Lll CCUJ1     CUU     Ul UUC      X UUJ. ~ UUiUJLAJilCU O       O . £ «        UOXOU^C        \_t—      pXUUJU     CblXWh 

2 yawing moments) and supporting strut. Spin rate indication is 

obtained from an electrical signal generated in a stationary coil by 

*%    mf\rr4 r\cr    morrnöl     ( anA    TYlO ema+A r\    fHolfl   1    Tn/M iy-i + o/1     ^ T\    +>u»     fll^l nril ri(T    TV*,r*+."1 rm Gb     JUWTXIJ^     UIO^ll^ w       l   Quit«      11H 1Q MIW w*V      ■*■ -*- *— -*-\-fc y       UJWIUIUWU      -i.*^       \# i m '       "j-*i » ■ ■ -fc **^      ^VJ.   w*.w*^ 

of the model. 

XWU      GLXX       JUUbUJLO      iiaU       W       l**3       UOCU     X Wl        OJJXXUXXXXe,       VfUC      1121^X^.1.0   ■ XUC       XXX  L?U 

is used only with the bare body configuration and is the  same as used 

in references 1 and 2 except smaller.    Its smaller size was necessi- 

tated "bv the r>^>'vrsical s^ace inside the model and also t>v the cfaojgjjäg 

of the exhaust air as it. passed through the small exit area at the 

tail of the model.    This choking effect forced a reduction in the 

no^Ele throat area and the nozzle supply pressure,  thereby reducing 

the available power.    Fortunately it is necessary to spin these nsouels 

only to 5000 rpm so that sufficient power is still available for the 

bare body model.    The finned models require more power than is avail- 
— V.T  ä        r*n       .«A       VSAS3        4-^.       -Mnn/\vl4-        +■ v-*       r\ 4»+-        r\ 'P      V» A   .TV»       TMUßCOlTMO        a"!  V»       A "f  V»Är»+oH        OTl + n 
QU.A-C:      OU      WC      UOU      UVJ      ACDWA.   ^       DU     Gb      J^ U     VI      i-L-i-^jJ-i.     ^/A *- u»-» Ui, <~      CA^J.       v*.j_j. v, v wv".     <-•*.* w 

the model fins. The air jet is directed onto the fins to accelerate 

the model and then retracted to a downstream position so that no ex- 

ternal forces from the nozzle act on the model while the balance is 

read. With both air motors data can be obtained only during the 

coasting period. 

The readout equipment for the strain gage signals has been 

revised, from that used to obtain the body data, so that automatic 

dAt«. recording is now -0088x016 on all four channels. The spin rate 

12 



Signal is changed from a variable frequency signal to a D.C. signal 

and placed on the abscissa of four x-y plotters* Each of the strain 

gage bridge signals in turn are put on the ordinate axes of the x-y 

plotters. thereby giving continuous recordings of the aerodynamic 

moments during the coasting period of the model. The pitching moment 

signals are fed directly to plotters; however, the yaw signals must 

be filtered in order to eliminate oscillatory signals induced by 

tunnel turbulence and model oscillations. The balance is much weaker 

in the yaw direction than in the pitch direction and the tunnel turbu- 

lence causes some oscillations in the yaw direction. The spike nose 

configurations,'  ' which produce an aerodynamic oscillation of their 

own, excite balance oscillations to a larger degree than the cone nose 

configurations. 

In reading the moment data from the x-y plots it is necessary 

to extrapolate from 500 rpm to zero. The electronic black box which 

converts the spin signal to a D.G. signal will not record properly 

between 500 rpm and zero. Also, the variation of fin normal force 

with the model roll angle makes it impossible to obtain an average 

moment reading at zero spin« The data between 4000 rpm and 500 rpm 

are linear so that a linear extrapolation to zero spin is reasonable. 

The extrapolation is not necessary on the bare body configura- 

tions for there is no variation of normal force with roll position. 

Even though the spin Bignal still does not record properly below 

500 rpm, the zero spin moment is accurate and the 500 rpm gap can be 

interpolate d * 

15 



TTCOrn    ■DDrVOPTiTID'l?    AWT.   UTQTTTmQ 
1JJM1      11WVJJX/UUUJ     .T1J.1.L/     AUJUV-U^U 

The tests on these models have been run in the ERL Tunnel No. 1, 

.-1XV.      -      «—--     — V.__l.     _._..     X--*——     —-J-      -« —     m.,~v.,-.n      (In Z "Dn-t-V.     hmr»1 >      „~.-,... WJ. Oil    a    1CW     UJUCUA.    1 UUS      UCI-llg     UltmC     All     IUUUBJ,    a\Jm      J* UUOU     UU11UCJ.D     WIC1 

the same Mach number range and can be used alternately; however, 

Tunnel No. 1 is usually preferred, for the flow uniformity is slightly 

better*    D°t° wer° obtain°d in ^*-hs sTIP^S of ot"*~-°ck rap^e of -^ °t 
,o . .       .     .  . _   .. ■  .     .... 
l increments using a nearly consxant Keynoias numDer condition. 

rpHo   flia'h.o    rVK+-;_o-I-n^r?    ^">]Y*inor   "hH^ao   foefe    p_cn*oa   f7ö-r*\r   up! 1    \r\ +.Vi   +-Hg 

ideas expressed in the introduction (Figs. 5, &> It  and o).    The 

Magnus force on the fins acts in the opposite direction from that on 

the body, and with the fin configuration tested the fin force is in 

general larger than the body force» The moment couple exists, as is 

evidenced by the rearward center of pressure location.  The couple, 

plus the moment due to the unbalanced fin force, places the effective 

center of pressure u^ to several ^ali^^rs behind +he b°se of the model 

From these data we find that the Magnus moments on slowly spinning 

finned configurations are as large as those existing on rapidly 

spinning bodies of revolution. 

The original plan in conducting the wind tunnel experiments was 

to test several configurations so that possible ways and means of 

VtU.~,/-Lll£      UUC    I'lO^JllUD     i.UrtC     WUIU     UC     DUUU-LGU.« UUWCVCl,       UUC      bCOliO     Uli 

the first two configurations (the spike nose and the cone nose) show 

that even though the data are sufficiently accurate to prove our 

original ideas thev are not suffidentic accurate to show variations 

due to Reynolds number, Mach number, and configuration differences. 

Estimates of the data accuracy have been made by comparing data at 

positive and negative angles of attack. The data should be symmetric 

CIUWU.U     /iCi yj    QII^H;    WJ.     CLOUCH^X*.^     uuwgygj, •     nioj^^ui-uu    \JA.      UUA~    uava    uuvno 

differences of the order of 25$. 

Ik 



The reason for the inaccuracies is the inability to obtain the 

desired sensitivity in the yawing moment gages. The gage sections 

must be designed to withstand the normal force stresses as well as 

the Magnus force stresses, and since the Magnus force is less than 

5$ of the normal force, the normal force controls the gage section 

dimensions and hence the sensitivity. Also, the gage section di- 

mensions determine the natural frequency of the strain beam and model 

and it is necessary to keep the frequencies sufficiently high to pre- 

vent resonance with the tunnel turbulence frequencies. With the 

present system, enough of the turbulence enters the balance yaw 

signals to require electronic filters before recording the signals 

on the x-y plotters. 

Another source of inaccuracy is the location of the two yawing 

moment gages. These are located inside the model (2.75 ancL 4.25 C&1 

forward of the base) close to the body alone Magnus force center of 

pressure. However, the finned body Magnus center of pressure is 

located in general behind the model base, thereby reducing the 

accuracy of the data reduction. This is being corrected by locating 

a third yawing moment gage downstream of the fins. The sensitivity 

of the yaw signal is also to be increased by using semi-conductor 

gages rather than the wire gages.  Temperature drifts, which are a 

disadvantage of the semi-conductor gages, may not be bothersome for 

only relative readings taken a few minutes apart are required. If 

the semi-conductor gages are satisfactory the program will be continued 

usin« the new gages. 

15 



CONCLUSIONS 

Analysis of the flow over a slowly spinning finned projectile 

bri^^s forth, the followix10 results; 

1. The wake created by the body of a spinning finned-body 

configuration int**rf°r°s wit^1 the lift f o"1"*"*** on th° ^otat"'ricr "^ins 

in such a manner that a side force results. 

in rree spin is opposite in direction to tne body Magnus force so 

that the resulting side force can be in either direction or zero. 

3. The side force on the fins of a configuration which is in 

free spin will be in the same direction as the body Magnus force at 

low angles of attack. At higher angles of attack the Magnus force 

will decrease toward zero. 

h.    The body Magnus force and the fin side force usually do 

not have the same centers of pressure. Therefore a moment exists, 

which is independent of the center of gravity, and is equal to the 

lesser of the two forces multiplied by the distance between them. 

This moment, plus the moment due to the unbalanced force, can move 

the center of pressure outside of the projectile length. 

R fHViÄ    C-IAA    fnrnoe    onH    mriTT»n+fi   r\n   a    a~\n\r~\v   ani nni nor   f •{ nndfl 

projectile can be as large as those existing on a rapidly spinning 

nonfinned projectile. 

ANDmS S, PLATOU 
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